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ABSTRACT
Deploying Machine learning (ML) on milliwatt-scale edge devices
(tinyML) is gaining popularity due to recent breakthroughs in ML
and Internet of Things (IoT). Most tinyML research focuses on
model compression techniques that trade accuracy (and model ca-
pacity) for compact models to fit into the KB-sized tiny-edge devices.
In this paper, we show how such models can be enhanced by the
addition of an early exit intermediate classifier. If the intermedi-
ate classifier exhibits sufficient confidence in its prediction, the
network exits early thereby, resulting in considerable savings in
time. Although early exit classifiers have been proposed in previous
work, these previous proposals focus on large networks, making
their techniques suboptimal/impractical for tinyML applications.
Our technique is optimized specifically for tiny-CNN sized models.
In addition, we present a method to alleviate the effect of network
overthinking by leveraging the representations learned by the early
exit. We evaluate T-RecX on three CNNs from the MLPerf tiny
benchmark suite for image classification, keyword spotting and
visual wake word detection tasks. Our results show that T-RecX
1) improves the accuracy of baseline network, 2) achieves 31.58%
average reduction in FLOPS in exchange for one percent accuracy
across all evaluated models. Furthermore, we show that our meth-
ods consistently outperform popular prior works on the tiny-CNNs
we evaluate.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Computer
systems organization→ Embedded and cyber-physical sys-
tems; • Human-centered computing → Ubiquitous and mo-
bile computing.
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Figure 1: CNN with early-exit
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1 INTRODUCTION
Recent advancements in Machine learning (ML) and IoT have pro-
ducedMLmodels that have compute andmemory requirements low
enough to be run directly on small milliwatt-scale devices. These
models enable several real-world applications such as smart farm-
ing [55], smart cities [5, 35], driverless cars [13, 25, 36], and smart
healthcare [43, 52]. The study of deploying such ML models on
ultra-low power resource-constrained milliwatt-scale edge devices
is called TinyML [59].

The capabilities of TinyML are limited by strict power, resource,
and compute constraints of the edge devices. TinyML targets ultra-
low-power devices (milliwatt range) with limited compute power
that are often battery-operated. TinyML models must be small
enough (few kilobytes) to fit into the KB-sized tiny-edge devices
and require all computations to run locally with no support from
the cloud. Thus, one of the major objectives of TinyML is to mini-
mize the energy per prediction. To that end, several solutions have
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been proposed to improve the energy-efficiency/inference time of
ML models running on edge devices. The predominant body of
prior work involves model compression techniques such as prun-
ing [33], quantization [10, 11, 16] and knowledge distillation [44].
However, compression comes at the cost of model accuracy and
leads to reduced model capacity. Other areas of work such as split-
computing [24] and prediction cascades [56] have been proposed
for the tiny-edge setting (more details in Section 2). These methods
also suffer from reduced model capacity and often require delega-
tion to the cloud to conserve network accuracy. As a result, they
are impractical for our applications.

In contrast, early-exit networks preserve the network’s model
capacity while reducing the average inference time. Early-exit net-
works place intermediate classifiers along the depth of a baseline
DNN that are capable of producing an output that approximates
the output of the final classifier. These intermediate classifiers act
as additional exit paths for the DNN. If the confidence score of the
output at any intermediate classifier is above a predefined/learned
threshold, the DNN exits and the output of that intermediate clas-
sifier is forwarded to the output of the DNN. Figure 1 shows a
convolution neural network (CNN) with one early-exit block. Early-
exit strategies are quite general and can be applied to off-the-shelf
state-of-the-art networks as a means to improve the average infer-
ence time with minimal overhead [51]. In addition, early-exit can
be applied in conjunction with other energy reduction techniques
such as pruning and quantization.

However, early-exits are detrimental to the network perfor-
mance [21], and this negative effect worsens as model size decreases
(Section 3). Our key contributions are summarized as follows.

• We identify key challenges in applying early-exits for tiny-
CNNs (Section 3), and demonstrate that prior early-exit
works are inefficient/ineffective (Section 6.4).

• We propose T-RecX, an early-exit architecture specialized
for tiny-CNNs that addresses these challenges (Section 4).

• We develop a method to mitigate the effect of network over-
thinking [26] for tiny-CNNs that reclaims some of the lost
accuracy due to early-exit (Section 4.3).

• T-RecX achieves 31.58% average reduction in FLOPS for one
percent accuracy trade-off across all the CNNs we evaluate
from the MLPerf tiny benchmark suite [2].

• Our methods increases the accuracy of the baseline network
in all tiny-CNNs we evaluate.

To the best of our knowledge, we are the first to propose the use of
an early-exit strategy for tiny-CNNs that optimizes for both accu-
racy and floating-point operations per second (FLOPS) reduction.

2 RELATEDWORK
Resource efficient machine learning Several works have been
proposed for improving the average inference time of CNNs at the
edge. The primary methods relevant for the tinyML space involve
model compression techniques [10, 16, 17, 33, 44] to fit models into
tiny-edge devices. Other approaches propose changes to network
topology and explore resource and computationally efficient ver-
sions of traditional neural network models [9, 14, 15, 29, 42]. These
efforts are complementary to our work, and can be used in combi-
nation with our proposed early-exit technique. Two other solutions,

which are closer to our approach, are split computing [12, 19, 24]
and prediction cascades [1, 4, 46, 56]. Split computing seeks to par-
tition the ML model between the edge device and cloud. Cascade
networks consist of a cascade of DNNmodels that get progressively
larger to obtain a prediction cascade. Unlike split computing, the
computations are not reused in cascading networks. Since both
approaches rely on the cloud, they are impractical for tinyML.
Early-exit networks Teerapittayanon et al. [51] first introduced
early-exit strategies for CNNs. That work proposes adding two
early-exits and uses multiple convolution blocks as part of its early-
exit architecture. Similarly, Szegedy et al. [49] use convolution
layers in its early-exit blocks. Another relevant work, Multiscale
Densenet (MSDNet) [21] generates multiple feature maps after
each layer with different scales. The authors show that adding
early-exits interferes with the features learnt at the later layers.
Hence, the multi-scale feature maps help in maintaining coarse-
level features throughout the network, which helps the accuracy of
early-exit classifiers. The early-exit blocks consists of one average
pooling layer followed by a dense layer. Bonato et al. [3] focuses on
boosting the classification rate of a specific class at early-exit. Its
early-exit architecture is identical to that of MSDNet. The overall
accuracy of the network is improved since each early-exit block
has access to all feature maps from preceding layers. Skipnet [57]
selectively skips convolution layers during inference by using a
small gating network without sacrificing accuracy. Shallow deep
network [26] introduce early-exits to CNNs to study the problem
of network overthinking and mitigate its destructive effect. It uses
multiple early-exits with pooling and dense layers. Leontiadis et
al. [30] describes hierarchical models from a global base model
for the mobile edge. The appropriate model is selected at runtime
depending on the computation budget.

Several other works [6, 38, 39, 41, 50, 61] present early-exit
networks. Some tinyNN-specific early-exit works [31, 32, 60] exit
purely based on energy (battery) constraints and sacrifice heavily
on accuracy. In our work, we optimize for both accuracy and FLOPS
and provide a tunable parameter that can trade-off between both.
Almost all prior works include multiple early-exit classifiers for bal-
ancing the network accuracy, which is unsustainable for tiny-CNNs.
Furthermore, we find that apart from the works in [3] and [21],
none explore utilizing high-level representations learned by the
earlier layers at the final layers. Unlike T-RecX, both [3] and [21]
leverage feature maps from multiple exit points, which results in a
prohibitive cost for the tiny-edge environment (Section 4.3).

3 MOTIVATION AND CHALLENGES
Deep neural networks are growing increasingly deeper in the pur-
suit of higher accuracy. However, the accuracy gains by using
deeper networks are paltry after a certain point [56]. For example,
a Resnet50 [18] model for an image classification task on the Ima-
geNet dataset [8] achieves an accuracy of 76.2%, but, a Resnet101
model (double the layers) for the same task achieves an accuracy of
77.4%. It is evident that a smaller model will suffice for many appli-
cations. Previous works [3, 21, 51, 56] have demonstrated that there
are a large number of easy-to-classify samples that do not require
the full depth of the DNNs. Early-exit networks exploit this property
to improve the average inference time of the network. However,
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as described in Section 2, most of the contemporary works target
larger neural networks that are not suitable for deployment on tiny-
edge devices. In this section, we enumerate the major challenges in
applying the early-exit technique on tiny-CNNs.
Additional exit-path affects network accuracy TinyML models
are primarily optimized to reduce their memory and compute re-
quirements through aggressive model compression [11, 33, 44, 45]
to fit on low-end devices while compromising on accuracy to some
degree. Consequently, the compressed models are stripped to their
bare-bones and have a high degree of neuron co-adaptations be-
tween successive layers compared to their larger counterparts. Any
change to the model architecture, like adding an early-exit is adver-
sarial and detriments the performance of the network. Additionally,
given the size of tiny-CNNs, the early-exit block has to be attached
as close to the input as possible to see any real performance gains,
which irreversibly disrupts the crucial initial layers of the CNN [62].
Figure 2 illustrates this effect for a 4-layer depthwise separable CNN
model (DS-CNN). Figure 2 shows the standalone accuracy of the
final exit of the DS-CNN [63] model when a single early-exit block
is attached at 1

4
th, half and 3

4
th of the network. The standalone

accuracy of final exit refers to the accuracy of the final classifier
when all inputs take the final exit (no early-exit). The standalone
accuracy of the early-exit refers to the accuracy when all samples
take the early-exit. From the figure, we observe that the configu-
ration where the early-exit is attached at 1

4
th of the network i.e.

closest to the input results in the highest harm to the standalone
accuracy of the final classifier for the reasons discussed above.
Existing early-exit strategies are ineffective for tiny-CNNs
The predominant body of existing work on early-exits target large
neural networks, which also suffer from accuracy degradation with
even a single early-exit classifier [21]. To combat this challenge,
a majority of the existing works attach multiple early-exit blocks
along the length of the CNN [3, 26, 47, 51] to avoid the final-exit
as much as possible. For example, early-exit networks from Kaya
et. al. [26] place their early-exit classifiers at 15%, 30%, 45%, 60%,
75% and 90% of the Resnet-56 network for image classification on
the CIFAR-10 dataset [28]. For the same task, Teerapittayanon et.
al. [51] adds two early-exit branches after the 2nd convolution layer
and 37th convolution layer of the Resnet-110 network. In contrast,
the tiny-CNN model we evaluate for the same task and dataset is
a tiny Resnet-8 model [2]. Furthermore, the large CNN networks
targeted in prior works are less vulnerable to an extra output com-
pared to tiny-CNNs because the larger networks have enough layers
after the early-exit block to relearn the complex neuron relations
disturbed by the early-exit. Moreover, the relative placement of the
early-exit in larger networks usually bypasses the initial crucial
layers. Another approach adopted by prior works [3, 21] is to com-
bine feature maps from all previous early-exits. However, the cost
incurred by both placing multiple early-exits and combining feature
maps from previous layers is untenable for tiny-CNNs. For example,
the Resnet-8 model with two early-exits results in 17.2% increase
in model parameters, which is huge from a tinyML perspective. As
a result, tiny-CNNs are limited to a single early exit placed as close
to the input as possible because the inference cost (FLOPS) quickly
grows beyond that of the unmodified baseline network as we move
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Figure 2: The accuracy of final classifier with respect to the
relative location of early-exit.

away from the input. Unfortunately, the proximity of the early-
exit to the input in CNNs results in notable accuracy degradation.
Thus, early-exit in tiny-CNNs induce a trade-off between network
accuracy and FLOPS. The primary contribution of this work is to
study the feasibility and effects of early-exit on tiny-CNNs and
formulate techniques that balances the overall network accuracy
while delivering notable reduction in FLOPS.

4 T-RECX
T-RecX modifies the baseline tiny-CNN model by adding a single
early-exit block as shown in Figure 1. However, the reduced model
capacity of the early-exit classifier induces a high scope for misclas-
sification. T-RecX addresses this challenge using a novel early-exit
block for tiny-CNNs and employing a joint-training method. We
formulate the problem formally in Section 4.1. Section 4.2 describes
the architecture of the early-exit block and a training method with
a joint loss function. Section 4.3 describes a method to mitigate the
effect of network overthinking at the final classifier by utilizing in-
formation from the early-exit block, thereby enhancing the overall
network accuracy.

4.1 Problem Setup
Given a baseline trained tiny-CNN model𝑀𝐵 (𝑥 , 𝜃 ), T-RecX adds
an early-exit block 𝐸𝑒 as shown in Figure 1. 𝜃 represents the model
parameters learned after training. The model after adding the early-
exit block is denoted by𝑀𝐵𝑒 (𝑥 , 𝜃𝑒 ) and is defined as,

𝑀Be (𝑥, 𝜃𝑒 ) =
{
𝑎𝑟𝑔𝑚𝑎𝑥 (𝑧𝑖 :E-e), if𝑚𝑎𝑥 (𝑧𝑖 :E-e) ≥ 𝜌

𝑎𝑟𝑔𝑚𝑎𝑥 (𝑧𝑖 :E-f), otherwise
(1)

where 𝑧𝑖 :E-e and 𝑧𝑖 :E-f are the softmax scores of the early-exit classi-
fier and the final classifier respectively computed from the 𝑖th input
sample 𝑥𝑖 . 𝜌 is the confidence threshold such that 0 ≤ 𝜌 ≤ 1 , which
can be used to tune the early-exit rate (𝐸𝐸𝑟𝑎𝑡𝑒 ) to tradeoff between
classification accuracy and network inference cost. The softmax
score at early-exit is used as the confidence metric. If the highest
score of the softmax output i.e. the score of the predicted label at
the early-exit is greater than or equal to a threshold (𝜌), the CNN
exits at the early-exit and the prediction of the early-exit classifier
is forwarded to the output of the CNN. Otherwise, the prediction
of the final classifier is forwarded to the output.

The total accuracy of the model is given by,

acctotal =

∑
∀𝑖∈N𝑒

(𝑦𝑖 == 𝑦𝑖 ) +
∑

∀𝑖∈N𝑓
(𝑦𝑖 == 𝑦𝑖 )

𝜂𝑒 + 𝜂𝑓
(2)

whereN𝑒 andN𝑓 are the set of input samples that exit at the early-
exit (𝐸𝑒 ) and the final exit (𝐸 𝑓 ) and, 𝜂𝑒 and 𝜂𝑓 are the number of
test samples present in N𝑒 and N𝑓 respectively. The total number
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of test samples (𝜂) is given by 𝜂 = 𝜂𝑒 + 𝜂𝑓 . 𝑦𝑖 and 𝑦𝑖 denote the
predicted label and the true label respectively.

At a high level, the objective of T-RecX is to maximize both the
early-exit rate given by 𝐸𝐸𝑟𝑎𝑡𝑒 (𝜌) = 𝜂𝑒

𝜂𝑒+𝜂𝑓
, and overall accuracy of

the model given by Eq 2. The 𝐸𝐸𝑟𝑎𝑡𝑒 (𝜌) is increased by lowering the
threshold 𝜌 . However, the accuracy at early-exit degrades quickly as
the 𝐸𝐸𝑟𝑎𝑡𝑒 increases beyond a certain point because of the limited
model capacity of the early-exit classifier. On the other hand, as
the 𝐸𝐸𝑟𝑎𝑡𝑒 is reduced, the network inference cost (C) increases. We
describe the network inference cost in terms of FLOPS. As shown
in Figure 1, the early-exit model𝑀𝐵𝑒 (𝜃𝑒 ) can be divided into three
parts i.e. common block, early-exit block and the final block. The
network inference cost is given by,

C =

{
CE-e, if early-exit
CE-f, otherwise

(3)

where, CE-e = Ccommon + CEE and CE-f = CE-e + Cfinal
Ccommon, CEE and Cfinal are the inference cost of the com-

mon block, early-exit block and the final block of the network
respectively. CE-e and CE-f give the inference cost of the early-exit-
classifier and the final classifier. The objective of T-RecX distills to
minimizing the total network inference cost (C) with an acceptable
trade-off on classification accuracy.

4.2 Architecture of Early-exit block and
Training Methodology

Since the featuremap input to the early-exit block is a high-dimensional
variable, it is not highly informative of its true label [53]. As a re-
sult, most prior works only have a feature reduction stage (pooling)
before the classification (dense) layer. Our preliminary experiments
showed that for tiny-CNNs, naïve feature reduction leads tomassive
information loss and accuracy degradation. Further investigations
revealed that high-dimensional feature maps do not posses sparse
class-specific information that help in lowering network confusion
(ambiguity in prediction). Our analysis showed that the early-exit
classifier requires additional information to resolve confusion. To
accomplish this, we increase the number of channels by introduc-
ing a combination of pointwise and depthwise convolutions layers.
Figure 1 shows the architecture of T-RecX’s early-exit block. The
early-exit block consists of a pointwise convolution that increases
the number of channels followed by a depthwise convolution that
extracts feature information from each channel. By increasing the
number of channels, we increase the perceptions of the input image
thereby lowering the confusion of the early-exit classifier. Simulta-
neously, we increase the stride of the depthwise convolution layer
to achieve partial feature reduction before the pooling and dense
(classification) layers. Our analyses showed that the accuracy of the
early-exit steadily increases as its channel width expands, as long
as the channel width of the early-exit is below or equal to that of
the final exit. The accuracy gain saturates quickly beyond this point.
We find that the optimal configuration in terms of both accuracy
and resource usage is when the PCONV layer of the early-exit dou-
bles the number of channels at its input. A higher channel width
incurs significant memory and compute overhead whereas, a lower
channel width results in meager accuracy gains. In our evaluations,
we configure the PCONV layer for the same.

Training Methodology Given an untrained baseline model𝑀𝐵e

attached with an early-exit block as shown in Figure 1, T-RecX
trains the network parameters 𝜃𝑒 , such that the network inference
cost C is minimized with an acceptable trade-off on accuracy. T-
RecX uses the cross-entropy loss with the Adam optimizer [27]
as the objective function, which is the same as that used by the
reference models [2]. The early-exit block is added to the baseline
network and all the weights are learned simultaneously. Since the
early-exit CNN is a dual-output neural network, the combined loss
value is obtained by adding the loss terms from each output. The
proximity of the early-exit to the input layer results in the weights
of the initial layers (common block) being heavily optimized for the
early-exit leading to accuracy drop at the final classifier (Section 3).
Therefore, to attenuate the effect of the early-exit on the common
block layers, T-RecX weights the loss term at the early-exit by a
factor𝑤E-e such that 0 < 𝑤E-e < 1. Thus, the total loss is given by,
L = 𝑤E-e · LE-e + LE-f. The loss terms computed at the early and
final exit are LE-e and LE-f respectively. A smaller weighting of the
loss function at early-exit reduces the impact on the co-adaptations
of neurons in the common block of the network. We experiment
with various values of 𝑤E-e for each network we evaluate. The
𝑤E-e value that gives the maximum standalone accuracy at the final
classifier i.e. the value of𝑤E-e that causes minimum disturbance in
the complex relations learned between the layers of the common
block and the final block is selected. The values that satisfy this
constraint are reported in Section 5.

4.3 Early-view assisted classification
Despite the effectiveness of the proposed early-exit block and the
training method, there are still some samples that are misclassified
at the early-exit but would have been correctly classified at the
final exit. Similarly, there exists a set of samples that would have
been correctly classified at the early-exit had they exited there. The
final classifier misclassifies these samples due to overthinking. From
Kaya et al. [26], a network is said to overthink when 1) the higher-
level representations of an input sample computed by an early layer
suffices for a correct classification and 2) further computation by
the subsequent layers lead to misclassification by the final classifier.
Hence, the biggest challenge with adding a single early-exit is to
determine which input samples should exit early, and which should
not. At best, this can be predicted by a heuristic, inevitably leading
to accuracy loss. This is an open problem and almost all solutions
to tackle it involve multiple early-exits. Although, the problem of
overthinking in tiny-CNNs is not as dominant as in large CNNs, we
observe that the problem still persists. Early-exit networks provide
an opportunity to mitigate the effect of overthinking and reclaim
some of the lost accuracy. Since the early-exit block is computed
before the final classifier, it presents us with an opportunity to
leverage information from the early-exit block to improve the per-
formance of the final classifier. However, naïve concatenation of
the output of the early-exit block with the final layer yields poor
results. T-RecX recognizes that the filter weights of the convolution
layers in the early-exit block capture the essence of the features
that are learnt at the early-exit.

A convolution filter extracts certain features from the input de-
pending on the values of the filter weights. For example, a Sobel
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filter [23] detects edges whereas a Laplacian filter [48] detects blobs.
Similarly, the filter weights learned by each convolution layer in a
CNN extracts relevant features in a high-dimensional space. The
filters weights learned by the convolution layers in the earlier layers
are adept at extracting higher-level features like shapes, appearance
and outlines. On the other hand, the convolution layers closer to
the final classifier focus more on complex features. Occasionally,
the eminence of higher-level features learnt by the earlier layers
diminishes at the final classifier leading to overthinking. T-RecX
addresses this problem by enhancing the higher-level features at the
final exit. Figure 3 illustrates the setup for early-view assisted clas-
sification. T-RecX assists the final classifier in making its prediction
by providing an early-view of the input image as follows.
1) T-RecX makes an identical copy of the depthwise convolution
layer (𝐷𝐶𝑂𝑁𝑉 E-e) from the early-exit block. The newly created
depthwise convolution layer is denoted as 𝐷𝐶𝑂𝑁𝑉 E-f.
2) The input to 𝐷𝐶𝑂𝑁𝑉 E-f are the feature maps generated by the
final convolution block of the CNN.
3) The output of 𝐷𝐶𝑂𝑁𝑉 E-f is concatenated with the output of the
final convolution block, which is subsequently fed into the final
classifier (dense layer) for a prediction.

During training, the filter weights learned by 𝐷𝐶𝑂𝑁𝑉 E-e are
copied over to 𝐷𝐶𝑂𝑁𝑉 E-f at the end of every training batch for
approximately the first 80% of the training epochs. For the final 20%
of the epochs, the filter weights of 𝐷𝐶𝑂𝑁𝑉 E-f are free to tune itself
to learn the co-adaptations required for assisting the final classifier.

Thus, the 𝐷𝐶𝑂𝑁𝑉 E-f layer convolutes the output of the final
convolution block using the filter weights learned at the early-exit.
Since the filter weights learned by the earlier convolution layers
provide a different (high-level) view of the input image, concatenat-
ing this view with that of the final convolution layer allays some
confusion in the final classifier caused due to overthinking. The
early-view (EV) feature maps thus obtained act as a regularizer
for the final dense layer and mitigates the negative effect of over-
thinking. Therefore, the accuracy of the final classifier improves
thereby, increasing the overall accuracy of the early-exit network.
However, our preliminary evaluations revealed that excessive chan-
nel width of 𝐷𝐶𝑂𝑁𝑉 E-f results in accuracy degradation because
the early-view overpowers the final-view. Thus, the channel width
must be chosen such that the early-view aids the final-view instead
of suppressing it. Our empirical evaluations indicate that the maxi-
mum performance gains are obtained when 1) the channel width of
𝐷𝐶𝑂𝑁𝑉 E-f is less than half the channel width of the final CONV
block, and 2) the channel width of 𝐷𝐶𝑂𝑁𝑉 E-f is at least half the
channel width of the early-exit block. To optimize for memory,
in our evaluations, we set the channel width of 𝐷𝐶𝑂𝑁𝑉 E-f to be
half the channel width of the early-exit. Section 6.3 discusses the
effectiveness of this approach.

5 EVALUATION METHODOLOGY
We evaluate T-RecX on three tasks from theMLPerf tiny benchmark
suite [2] published by MLCommons: image classification, keyword
spotting and visual wake words. These models are tailor-made
for tinyML. Further, we evaluate with the exact training scripts
(and hyperparamters) used by MLPerf tiny on their official github

Feature maps from
early-exit layers

Filter weights learnt
at early-exit

D
C
O
N
V

P
O
O
L

D
E
N
S
E

Early
exit

D
C
O
N
V

C

P
O
O
L

D
E
N
S
E

Final
exit

Feature maps from
final CONV block

Concatenate Early-view
and Final-view

Figure 3: Early-view assisted classification

page [37]. The frameworks used are Tensorflow v2.3 with Python
v3.7 and models are trained on a GeForce RTX 2080 GPU.
Image classification The image classification task uses a cus-
tomized Resnet [2] that classifies images into ten categories (class)
of the CIFAR-10 dataset [28]. The model is trained for 500 epochs
with a mini-batch size of 32. The Resnet model has 3 residual stacks.
We place the early exit immediately after the 1st residual stack.
Keyword spotting Keyword spotting recognizes a short phrase
uttered by the user. The model used for the task is a depthwise-
separable CNN (DS-CNN) [63] with 4 layers of depthwise separable
convolutions. It distinguishes between 12 different classes on the
Speech command dataset [58]: 10 words + silence + unknown class.
Themodel is trained for 36 epochs with amini-batch size of 100. The
early-exit is placed immediately after the 2nd depthwise separable
layer (i.e. at 1

2
th of the network).

Visual wake words The visual wake words is a binary classifica-
tion problem that detects the presence of a person if the person
occupies more than 2.5% of the input image. The model used is
MobilenetV1 [20], which outputs two classes: person and no per-
son. The model is evaluated on the visual wake words dataset [7]
derived from the MSCOCO 2014 dataset [34]. For evaluation, we
use the COCO minival dataset [22] [40]. The Mobilenet model is
trained for 50 epochs with a mini-batch size of 32. The mobilenet
model has 14 layers; the early-exit is placed after the 4th layer.

The value of𝑤E-e used in our experiments that gives the max-
imum standalone accuracy at the final exit are: Resnet:0.5, DS-
CNN:0.3 and Mobilenet:0.4 (see Section 4.2).

6 RESULTS
T-RecX achieves an average of 31.58% reduction in FLOPS (infer-
ence time) in exchange for one percent accuracy across all evaluated
models (Section 6.1) with ∼ 9% increase in model size on average.
The FLOPS are obtained using [54]. Further, we show that the pro-
posed techniques enhance the classification accuracy of the baseline
network in all models that we evaluate. Section 6.2 compares the
performance of T-RecX’s early-exit block with the baseline. Next,
in Section 6.3 we compare the effectiveness of early-view assisted
classification and discuss its role in increasing the accuracy of the
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Figure 4: Benefit curve for all evaluated models

Model
Baseline T-RecX

Accuracy FLOPS Params FLOPS (millions) at Params Accstandalone
(milions) 1% tradeoff 2% tradeoff 3% tradeoff E-e E-f

Resnet (IC) 87.2% 25.28 78.7K 20.04 18.43 17.59 89.7K 73.3% 87.4%
DS-CNN (KWS) 92.2% 5.54 24.9K 3.45 3.31 3.18 28.2K 88.5% 92.37%

Mobilenetv1 (VWW) 85.81% 15.69 221.7K 9.99 8.97 8.36 226.2K 80.46% 86.44%
Table 1: Comparison of T-RecX with baseline network

final classifier. Finally, Section 6.4 shows that T-RecX consistently
outperforms prior methods. The proposed early-exit strategy is
orthogonal to other energy reduction techniques such as pruning
and quantization, and can be used in conjunction with them. For
example, applying post-training int8 quantization on the proposed
early-exit equipped Mobilenet model results in 70.4% reduction in
model size.

6.1 Accuracy vs Inference cost (FLOPS)
Figure 4 plots the FLOPS consumed as a function of the total ac-
curacy (Equation 2), averaged across all test samples. We refer to
this plot as the benefit curve. All plots are obtained by varying 𝜌
from 0 to 1 in step sizes of 0.01 (see Eq 1). As 𝜌 decreases, 𝐸𝐸𝑟𝑎𝑡𝑒
increases leading to a steady FLOPS reduction. However, the accu-
racy starts to drop quickly with an increase in 𝐸𝐸𝑟𝑎𝑡𝑒 . This effect
is illustrated in the benefit curves. Figure 4 plots the benefit curve
for the evaluated networks with and without early-view assisted
classification. The accuracy and the FLOPS of the baseline model
is marked by ’×’ in each plot. For higher values of 𝜌 , the accuracy
of the network is maintained (better even in all cases) close to the
baseline accuracy. Table 1 reports the improvement in the average
FLOPS as 𝜌 reduces. We report the accuracy and the FLOPS at three
trade-off points. The trade-off points corresponds to the reduction
in FLOPS obtained for every percent of accuracy sacrificed. For
example, for the Resnet model with a baseline accuracy of 87.2%,
we report the FLOPS at the points closest to 86.2%, 85.2% and 84.2%.
Image Classification (IC) For the image classification (IC) task,
the Resnet model achieves a 20.7% reduction in FLOPs on average
at the first trade-off point, and an additional FLOPS reduction of
6.39% and 9.71% respectively at the next two trade-off points. As
seen in Figure 4 and Table 1, the maximum benefit is gained in
exchange for the first percent of accuracy. The improvement in

inference time far outweighs the accuracy reduction in this region.
In addition to this, T-RecX attains a higher accuracy than that
of the baseline. It delivers around 8.9% reduction in the average
FLOPS even before the accuracy starts to fall below that of the
baseline. The ideal benefit curve has a steep slope. The longer the
curve maintains a steep slope, the higher is the reduction in FLOPS
without compromising accuracy. The slope of the benefit curve for
the Resnet model is affected by two factors. First, there is some
disparity in the learning capacities of the early-exit and the final
exit. The standalone accuracy of the early-exit i.e. when all inputs
exit at the early-exit is 73.39%. On the other hand, the standalone
accuracy of the final exit (i.e. no early-exit) is 87.46%. As a result,
as 𝜌 decreases more input samples exit at the early-exit and the
overall accuracy is impacted by higher misclassifications at the
early-exit. Second, the image classification task on the CIFAR-10
dataset is a 10-class classification problem. We observe that as the
number of classes increases the confusion (misclassification rate)
of the network rises. We investigate this phenomenon with the
Resnet model. In our experiments, we add an extra class to the
Resnet model with no changes to either the training data or model
hyperparameters. We observe that the standalone accuracies of
the early and final exit drop by 0.54% and 0.75% respectively. This
observation is consistent with the other models we evaluate. The
proposed techniques mitigate the confusion at the early-exit to
an extent by instilling higher confidence in the predictions of the
early-exit classifier. Section 6.2 presents more details.
Keyword spotting (KWS)The benefit curve of DS-CNNmodel [63]
for keyword spotting sees the highest reduction in FLOPS (37.7%
reduction) in the one-percent trade-off region. At the next two
trade-off points, the FLOPS consumed by the network falls down
to 40.2% and 42.5%. Furthermore, the standalone accuracies of the
early-exit and final exit are 88.5% and 92.37% respectively. Like
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Figure 5: Violin Plot of medium confidence predictions
(0.65 ≤ 𝑚𝑎𝑥 (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥𝑠𝑐𝑜𝑟𝑒𝑠) < 0.9)

Resnet, the standalone accuracy of the final classifier exceeds that
of the baseline network, and the total accuracy remains very close
to the baseline accuracy for the most part. The model delivers
the same network accuracy as that of the baseline network while
consuming just 69.6% of the FLOPS compared to the baseline.

The lower difference in the standalone accuracies of the two exits
in DS-CNN compared to Resnet is because the early and the final
exits are separated by just two depthwise separable convolutions.
Thus, the proximity in the learning capacities of the two exits
ensures that as the 𝐸𝐸rate increases the early-exit classifier reliably
classifies the input samples in an equivalent manner to that of
the final classifier in the 1% tradeoff region thereby, leading to a
steep benefit curve. Beyond this region, as the 𝐸𝐸rate increases, the
disparity in the model capacities of the early and final exit becomes
more prominent leading to steady accuracy degradation.
Visual wake word detection (VWW) The Mobilenet model for
visual wake word detection possesses the best benefit curve com-
pared to the other models we evaluate. For the most part, the curve
lies beyond the baseline network’s accuracy while consistently
delivering reduction in FLOPS. Also, the slope remains steep for
the majority of the curve. In fact, it delivers a peak reduction of
29.2% in FLOPS without falling below the baseline’s accuracy. Our
investigations revealed that since the early and the final exit are sep-
arated by 10 depthwise separable convolution layers, the problem
of network overthinking is more prominent in Mobilenet. There-
fore, the early-view (EV) assisted classification technique delivers
higher returns. This demonstrates the effectiveness of EV-assitance
in mitigating overthinking, potentially for even large CNNs. Fur-
ther, the reduction in the average FLOPS consumed is 36.3% at the
first trade-off point and 42.8% and 46.7% at the next two trade-off
points respectively. The standalone accuracies of the early and final
exit for Mobilenet are 80.46% and 86.44% respectively. In addition
to this, there is a more gradual reduction of FLOPS as 𝜌 decreases
compared to the abrupt fall we observe in DS-CNN. Our analysis
showed that this behavior is because visual wake word detection is
a binary classification task. The classification criteria for a binary
classification is when either of the class scores is ≥ 0.5. Therefore,
there is less scope for confusion. As a result, although the confi-
dence of the early-exit classifier lowers progressively as 𝜌 reduces,
its effect on the accuracy only becomes evident much later. Hence,
despite a 10-layer separation between the two exits, the standalone
accuracies are closer than expected. Thus, the slope of the benefit
curve remains steep for large parts.

87 88 89 90 91 92
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Accuracy(%)

with weight transfer without weight transfer EE-fmaps concat

Figure 6: Benefit curve for DS-CNN 1) w/ weight transfer
2) w/o weight transfer from early to final exit, and 3) concate-
nation of early-exit and final exit feature maps at final exit

6.2 Effectiveness of T-RecX’s early-exit block
As discussed in Section 2, in most of the prior works, the early-exit
block has either 1) a simple feature reduction stage (pooling) [3, 21,
26] or 2) more learning layers such as convolutions and dense layers
followed by feature reduction [49, 51]. In both cases, a final dense
layer is included for classification. Since most prior works attach
multiple early-exits, they opt for aminimal designwith only pooling
like the former case. We label this version of the early-exit block as
baseline EE. However, we find that this design is untenable for tiny-
CNNs with single early-exit. We demonstrate the effectiveness of T-
RecX’s early-exit block with respect to baseline EE. Figure 5 shows
the confidence distribution of all predictions obtained at the early-
exit for the Resnet model for two configurations: 1) with T-RecX’s
early-exit block and 2) with baseline EE block. The y-axis plots the
maximum score for each prediction.We consider predictions that lie
in the medium confidence region (0.65 ≤ 𝑚𝑎𝑥 (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥𝑠𝑐𝑜𝑟𝑒𝑠) <
0.9). We present the medium confidence region because we find
that there is no discernible change in the network’s accuracy for
scores > 0.9. Similarly, we do not present the low confidence region
(𝑚𝑎𝑥 (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥𝑠𝑐𝑜𝑟𝑒𝑠) < 0.65) because the accuracy degradation in
this region makes it impractical. As shown in Figure 5, the violin
plot of T-RecX’s early-exit block is noticeably leaner below the
median line compared to that of the baseline. Also, the median line
for T-RecX’s early-exit block is higher than that of the baseline EE.
Evidently, the confidence of the predictions with T-RecX’s early-
exit block is notably higher than that of baseline EE. This results
in a higher 𝐸𝐸𝑟𝑎𝑡𝑒 with lower misclassifications at the early-exit.
Nevertheless, to put it in context, we present the results obtained
on Resnet-8, which produces the least performance improvement
out of all models we evaluate.

6.3 Effectiveness of Early-view assistance
Figure 4 also plots the benefit curve for all the models we evalu-
ate without early-view (EV) assisted classification. As seen in the
figure, the EV-assisted classification outperforms the non-EV ver-
sions for all evaluated models. This underlines the effectiveness
of the proposed technique in addressing the problem of network
overthinking. For all models, we observe that the EV-assistance at
the final exit results in significant improvement in the standalone
accuracy of the final exit compared to non-EV-assisted versions i.e.
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Model
T-RecX Branchynet SDN

Par- Accuracy(%) Par- Accuracy(%) Par- Accuracy(%)
ams E-e E-f ams E-e E-f ams E-e E-f

Resnet 89.7K 73.4 87.4 98.4K 72.4, 79.7 85.7 94K 63.3, 75 86.3
DSCNN 28.2K 88.8 92.3 62.6K 85, 87.6 90.9 38.7K 63.7, 81.7, 89 91.8

Table 2: Comparison of T-RecX with Branchynet and SDN.
(Accuracy numbers reported here are standalone accuracies)

+0.6% for Resnet, +0.9% for DS-CNN and +2.9% for Mobilenet. This
in turn ensures higher FLOPS reduction before the curve hits the
trade-off points. Furthermore, to demonstrate the significance of
knowledge transfer from the early-exit to the final exit, we evaluate
the DS-CNN model with and without weight transfer using the
architecture shown in Figure 3. In addition, like Huang et al. [21]
and Bonato et al. [3], we also evaluate a configuration that concate-
nates the feature maps of the early-exit with that of the final exit
(denoted by EE-fmaps concat in Figure 6). The benefit curves for all
three configurations are plotted in Figure 6. As seen in Figure 6, the
model with weight transfer comfortably outperforms the version
without weight transfer with an average accuracy improvement of
+1.98%. This clearly illustrates that the accuracy improvement is
due to EV-assistance, and not simply because of additional learning
layers. Interestingly, the model with concatenation of early and
final exit feature maps also outperforms the version without weight
transfer, which indicates the presence of overthinking and the effec-
tiveness of leveraging the knowledge of early-exit to alleviate its
effect on accuracy. However, as seen from Figure 6, it is evident that
EV-assistance (weight transfer) method is more effectual compared
to naïve concatenation of feature maps.

6.4 Comparison with prior works
Figure 7 compares T-RecX with two popular prior works: Shallow
Deep Networks (SDN) [26] and Branchynet [51]. As discussed in
Sections 2 and 3, both Branchynet and SDN focus on large ML mod-
els and employ multiple early-exits. The former places additional
convolution layers at its two early-exits before pooling+dense, and
the latter opts for higher number of early-exits with a minimalist
design of pooling+dense at all exits. We apply the early-exit tech-
niques presented in Branchynet and SDN on two tinyCNNs we eval-
uate: Resnet-8 and DSCNN. Due to space constraints we omit the
results for MobilenetV1 because like DS-CNN, it is also a depthwise-
separable model. We denote the branchynet versions of Resnet and
DSCNN as Branchy-Resnet and Branchy-DSCNN, and their SDN
versions as SDN-Resnet and SDN-DSCNN respectively. Branchy-
Resnet and Branchy-DSCNN employ two early-exits at 1

3
rd and

2
3
rd of its networks. The early-exit blocks of Branchy-Resnet and

Branchy-DSCNN have an additional convolution layer before the
pooling+dense layers. On the other hand, SDN-Resnet uses two
early-exits (after each residual stack) and SDN-DSCNN uses three
early-exits (after each depthwise-separable layer) respectively. Both
SDN-Resnet and SDN-DSCNN employ a simple pooling+dense
configuration at each of their early exits.

Figure 7 compares all benefit curves. T-RecX consistently out-
performs both Branchynet and SDN. The model parameters of T-
RecX are on average 31.8% smaller than Branchynet and 15.8%
smaller than SDN. Further, Branchynet consumes significantly
higher FLOPS compared to other methods because of an addi-
tional CONV layer at its early-exits. This is especially noticeable
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Figure 7: Benefit curves of T-RecX, Branchynet [51] and
Shallow Deep Networks (SDN) [26] (y-axis in log-scale)

in DSCNN because the CONV layers are more compute/memory
intensive compared to depthwise separable convolutions. Also, we
observe that the benefit curves of both Branchynet networks are
similar to the non-EV (no weight transfer) versions of Figure 4. This
result shows that simply adding additional layers at early-exits is
not sufficient for accuracy preservation in tiny-CNNs, which in turn
exhibits the value of EV-assistance. Furthermore, SDN networks
outperform the Branchynet versions because they have a higher
number of early-exits. However, the benefit curves of T-RecX is
still comfortably superior compared to SDN. Table 2 reports the
model sizes and the standalone accuracies of all early-exits and
that of the final exit for all evaluated models. In particular, T-RecX
achieves the highest standalone accuracy at the final exit due to
EV-assistance, which ensures steady FLOPS reduction with minimal
compromise on accuracy.

7 CONCLUSIONS
Existing works on early-exit networks either target large networks
making them inapplicable for tiny-CNNs or optimize solely for en-
ergy while compromising heavily on accuracy. Further, tiny-CNNs
have higher sensitivity to early-exits compared to large CNNs. This
paper addresses these issues by 1) presenting a novel early-exit
architecture for tiny-CNNs, 2) describing a joint training method
that mitigates the disruption of neurons relations. Additionally, we
show a technique to mitigate the destructive effect of network over-
thinking at the final exit by distilling knowledge from the early-exit
block. T-RecX achieves an average of 31.58% reduction in FLOPS by
trading one percent of accuracy across all evaluated models and con-
sistently outperforms prior works. Also, the proposed techniques
increase the accuracy of the baseline network in all models we eval-
uate. The methods presented in this work can easily be extended
to large CNNs as well. T-RecX provides a simple way to trade-off
between accuracy and inference time (FLOPS) by tuning a single
parameter either pre/post deployment based on compute/energy
budget, which is useful for the tinyML space to manage battery life.
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A ARTIFACT APPENDIX
A.1 Abstract
This appendix describes the artifact associated with this work.

A.2 Artifact meta-information
• Algorithm: Early-exit technique for tinyCNNs
• Program: Tensorflow v2.3
• Compilation: Python v3.7, Tensorflow v2.3
• Model: Resnet-8, DSCNN, MobinetV1
• Datasets: CIFAR-10, Speech Commands, Visual wake words
• Run-time environment: Ubuntu Linux with miniconda
• Hardware: GeForce RTX 2080 GPU for model training
• Run-time state: set by our scripts
• Metrics: prediction accuracy, FLOPS
• Output: Accuracy vs FLOPS trade-off plot (benefit curve)
• How much disk space required (approximately)?: ∼15GB
• How much time is needed to prepare workflow?: 30-40min
• How much time is needed to complete experiments?: Several
hours. Each model takes around 4 to 5 hours to train on a GPU.
Testing on either trained models (or on pretrained models included
in artifact) takes ∼45-60min

• Publicly available?: Yes. Datasets are also publicly available

A.3 Description
A.3.1 How to access. https://github.com/nikhilghanathe/t-recx

A.3.2 Hardware dependencies. The results reported are based on
training done on a GeForce RTX 2080 GPU. The workflow can
practically be run on any laptop/desktop with a GPU.

A.3.3 Software dependencies. Ubuntu Linux, Tensorflow=2.3, Cud-
atoolkit=10.1, Cudnn=7.6, Python=3.7. Other tested build config-
urations for tensorflow can be found at: https://www.tensorflow.
org/install/source#gpu

A.4 Installation
T-RecX uses miniconda package manager. Installation instructions
for Linux at: https://docs.conda.io/en/latest/miniconda.html
Prepare environment
$ conda create -n trecx python=3.7
$ conda activate trecx

Clone repository and run install script
$ git clone https://github.com/nikhilghanathe/t-recx.git
$ bash install_conda_packages.sh
$ pip install -r requirements.txt

A.5 Experiment workflow
The repository contains three directories: image_classification, key-
word_spotting, visual_wake_words. These directories correspond
to evaluation of 1) Resnet-8 on CIFAR-10, 2) DSCNN on Speech
Commands and 3) MobilenetV1 on Visual wake words datasets
respectively. The scripts for downloading datasets, preprocessing,
training and testing have all been automated, and are included in
each directory. The scripts included use model hyperparameters
and architectures described in this paper. More details can be found
in the README.md file in each directory.

The repository also contains pretrainedmodels. As an alternative
to several hours of training, the results presented in this work can
be verified by running the test script included in each directory.
Details on running the test scripts can be found in the corresponding
README.md files.

A.6 Evaluation and expected results
The output from running the test scripts in each directory on the
trained models is saved in the results/ sub-directory. The test
script generates the benefit curve plots of Figure 4, Figure 7 and
Figure 6 of the paper.

133


